• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating the number of sources in white Gaussian noise: Simple eigenvalues based approaches

    Thumbnail
    التاريخ
    2017
    المؤلف
    Badawy, Ahmed
    Salman, Tara
    Elfouly, Tarek
    Khattab, Tamer
    Mohamed, Amr
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Estimating the number of sources is a key task in many array signal processing applications. Conventional algorithms such as Akaike's information criterion (AIC) and minimum description length (MDL) suffer from underestimation and overestimation errors. In this study, the authors propose four algorithms to estimate the number of sources in white Gaussian noise. The authors' proposed algorithms are categorised into two main categories; namely, sample correlation matrix (CorrM) based and correlation coefficient matrix (CoefM) based. Their proposed algorithms are applied on the CorrM and CoefM eigenvalues. They propose to use two decision statistics, which are the moving increment and the moving standard deviation of the estimated eigenvalues as metrics to estimate the number of sources. For their two CorrM based algorithms, the decision statistics are compared to thresholds to decide on the number of sources. They show that the conventional process to estimate the threshold is mathematically tedious with high computational complexity. Alternatively, they define two threshold formulas through linear regression fitting. For their two CoefM based algorithms, they re-define the problem as a simple maximum value search problem. Results show that the proposed algorithms perform on par or better than AIC and MDL as well as recently modified algorithms at medium and high signal-to-noise ratio (SNR) levels and better at low SNR levels and low number of samples, while using a lower complexity criterion function. 1 The Institution of Engineering and Technology.
    DOI/handle
    http://dx.doi.org/10.1049/iet-spr.2016.0128
    http://hdl.handle.net/10576/17404
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video