• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Life cycle assessment of integrated seawater agriculture in the Arabian (Persian) Gulf as a potential food and aviation biofuel resource

    Thumbnail
    Date
    2017
    Author
    Warshay, Brian
    Brown, J. Jed
    Sgouridis, Sgouris
    Metadata
    Show full item record
    Abstract
    Purpose: Prospective evaluation of the lifecycle impacts of aviation biofuel production in Abu Dhabi, UAE based on a production system that integrates aquaculture, saltwater agriculture, and mangrove silviculture, termed an Integrated Seawater Energy Agriculture System (ISEAS) in order to investigate its energetic and environmental potential compared to conventional fuels. Methods: We compare the hydroprocessed renewable jet fuel (HRJ) produced from ISEAS against fossil jet fuel using a life cycle assessment (LCA) methodology. Based on a detailed description of the production process, we use data from a wide-ranging literature review and experimental results from the specific location to make informed assumptions for the range of the process inputs and yields. We then analyze several process configuration scenarios with different ranges. Results and discussion: ISEAS can produce aviation biofuels, electricity, and food while afforesting coastal desert land, acting as a long-term sink for carbon, minimizing freshwater consumption, and having beneficial land use impacts when compared to fossil jet fuel production. Based on a sensitivity analysis, we show that ISEAS HRJ emits 38 to 68% less greenhouse gases than fossil jet fuel and yields an overall positive net energy balance under all scenarios except one with an extensive use of desalinated water. Conclusions: ISEAS offers a promising pathway for integrating aquaculture and seawater agriculture in arid regions. It is essentially a process to sustainably augment aquaculture-based products by using its waste as a biofuel resource. Achieving positive emissions results depend critically on minimizing freshwater use, maximizing biomass yield and to a lesser extent the performance of biomass gasification. , Springer-Verlag Berlin Heidelberg.
    DOI/handle
    http://dx.doi.org/10.1007/s11367-016-1215-5
    http://hdl.handle.net/10576/17522
    Collections
    • Center for Sustainable Development Research [‎340‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video