An automatic fast optimization of Quadratic Time-frequency Distribution using the hybrid genetic algorithm
المؤلف | Abdul Awal, Md. |
المؤلف | Boashash, B. |
تاريخ الإتاحة | 2021-02-08T09:14:54Z |
تاريخ النشر | 2017 |
اسم المنشور | Signal Processing |
المصدر | Scopus |
الملخص | This paper presents a novel framework for a fully automatic optimization of Quadratic Time-frequency Distributions (QTFDs). This ‘black box’ approach automatically adjusts the QTFD kernel parameters by using a hybrid genetic algorithm (HGA). This results in an optimal use of QTFDs suitable for non-specialist users without requiring any additional input except for the signal itself. This optimization problem has been formulated as the minimization of the cost function of a modified energy concentration measure. The efficiency of the proposed method has been demonstrated by representing selected non-stationary signals in the time-frequency domain and testing robustness under different SNR conditions by estimating the instantaneous frequency. A fast implementation of QTFD optimization reduces computation time significantly; e.g., the computation time of a real world bat signal of 400 samples reduces to 3.5885±0.3942 s from its standard implementation (53.0910±1.445 s). |
راعي المشروع | This work was supported in part by a Grant from the Qatar National Research Fund under its National Priorities Research Program award number NPRP 4-1303-2-517. |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Energy concentration measure Gradient descent HGA QTFD Time-frequency optimization |
النوع | Article |
الصفحات | 134-142 |
رقم المجلد | 131 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الأبحاث [1449 items ]