• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Learning IoT Malware Detection Model for IoMT Edge Devices

    Thumbnail
    عرض / فتح
    Suleiman Kayed Kharroub _OGS Approved Thesis.pdf (1.887Mb)
    التاريخ
    2021-01
    المؤلف
    KHARROUB, SULEIMAN KAYED
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Internet of Things (IoT) is defined as the massive collection of physical devices being connected to the Internet. IoT has a positive impact in multiple fields, such as health, agriculture, and power management sectors by advancing them to new technical horizons. However, such advanced technologies introduce security challenges that can negatively affect IoT applications and possibly threaten their existence. In the health sector, for instance, Internet of medical things (IoMT) devices are used to perform tasks such as remote patient monitoring and to gather biometric information. Also, these devices are used as a base for several healthcare procedures such as prescribing medication. Several security breaches can occur to IoMT devices that may expose human privacy and security since the data collected and processed is very sensitive. In this thesis, we provide a light-weight malware detection deep learning model. The model is deployed on IoMT edge devices that can detect IoT specific malware. The proposed models utilize gray-scale images produced by the binary of malware files to classify malware from goodwares. The achieved results were promising in terms of malware classification accuracy, which might help prevent malware and secure the dedicated systems for IoMT devices and applications.
    DOI/handle
    http://hdl.handle.net/10576/17721
    المجموعات
    • الحوسبة [‎110‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video