• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HD Qatari ANPR system

    Thumbnail
    التاريخ
    2016
    المؤلف
    Hommos, Omar
    Al-Qahtani, Abdulhadi
    Al-Zawqari, Ali Farhat Ali
    Bensaali, Faycal
    Amira,Abbes
    Zhai, Xiaojun
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Recently, Automatic Number Plate Recognition (ANPR) systems have become widely used in safety, security, and commercial aspects. The whole ANPR system is based on three main stages: Number Plate Localization (NPL), Character Segmentation (CS), and Optical Character Recognition (OCR). In recent years, to provide better recognition rate, High Definition (HD) cameras have started to be used. However, most known techniques for standard definition are not suitable for real-time HD image processing due to the computationally intensive cost of localizing the number plate. In this paper, algorithms to implement the three main stages of a high definition ANPR system for Qatari number plates are presented. The algorithms have been tested using MATLAB and two databases as a proof of concept. Implementation results have shown that the system is able to process one HD image in 61 ms, with an accuracy of 98.0% in NPL, 99.75% per character in CS, and 99.5% in OCR. 2016 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICCSII.2016.7462420
    http://hdl.handle.net/10576/17915
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video