• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strength and durability of composite concretes with municipal wastes

    Thumbnail
    Date
    2016
    Author
    Tokgoz, D. Deniz Genc
    Ozerkan, N. Gozde
    Kowita, O. Samir
    Antony, S. Joseph
    Metadata
    Show full item record
    Abstract
    The influence of different types of polyethylene (PE) substitutions as partial aggregate replacement of microsteel fiber-reinforced self-consolidating concrete (SCC) incorporating incinerator fly ash was investigated. The study focuses on the workability and hardened properties including mechanical properties, permeability properties, sulfate resistance, and microstructure. Regardless of the polyethylene type, PE substitutions slightly decreased the compressive and flexural strength of SSC initially; however, the difference was compensated at later ages. Scanning electron microscope (SEM) analysis of the interfacial transition zone showed that there was chemical interaction between PE and the matrix. Although PE substitutions increased the permeable porosity and sorptivity, it significantly improved the sulfate resistance of SCC. The influence of PE shape and size on workability and strength was found to be more important than its type. When considering the disposal of PE wastes and saving embodied energy, consuming recycled PE as partial aggregate replacement was more advantageous over virgin PE aggregate-replaced concrete. Copyright 2016, American Concrete Institute. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.14359/51689111
    http://hdl.handle.net/10576/21129
    Collections
    • Center for Advanced Materials Research [‎1497‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video