Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites
View/ Open
Publisher version (Check access options)
Check access options
Date
2016Author
Khanam, P. NoorunnisaAlMaadeed, M.A.
Ouederni, M.
HarkinJones, Eileen
Mayoral, Beatriz
Hamilton, Andrew
Sune, Dan
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Composites of Linear Low Density Polyethylene (LLDPE) and Graphene Nanoplatelets (GNPs) were processed using a twin screw extruder under different extrusion conditions. The effects of screw speed, feeder speed and GNP content on the electrical, thermal and mechanical properties of composites were investigated. The inclusion of GNPs in the matrix improved the thermal stability and conductivity by 2.7% and 43%, respectively. The electrical conductivity improved from 10-11 to 10-5 S/m at 150 rpm due to the high thermal stability of the GNPs and the formation of phonon and charge carrier networks in the polymer matrix. Higher extruder speeds result in a better distribution of the GNPs in the matrix and a significant increase in thermal stability and thermal conductivity. However, this effect is not significant for the electrical conductivity and tensile strength. The addition of GNPs increased the viscosity of the polymer, which will lead to higher processing power requirements. Increasing the extruder speed led to a reduction in viscosity, which is due to thermal degradation and/or chain scission. Thus, while high speeds result in better dispersions, the speed needs to be optimized to prevent detrimental impacts on the properties.
Collections
- Center for Advanced Materials Research [1379 items ]
- Materials Science & Technology [310 items ]