Self-organizing maps for structural damage detection: A novel unsupervised vibration-based algorithm
الملخص
The study presented in this paper is arguably the first study to use a self-organizing map (SOM) for global structural damage detection. A novel unsupervised vibration-based damage detection algorithm is introduced using SOMs in order to quantify structural damage. In this algorithm, SOMs are used to extract a number of damage indices from the random acceleration response of the monitored structure in the time domain. The summation of the indices is used as an indicator which reflects the overall condition of the structure. The ability of the algorithm to quantify the overall structural damage is demonstrated using experimental data of Phase II experimental benchmark problem of structural health monitoring. 2015 American Society of Civil Engineers.
المجموعات
- الهندسة المدنية [892 items ]
وثائق ذات صلة
عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.
-
A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.... more authors ... less authors ( Springer , 2022 , Conference)Monitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural ... -
Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan ( Springer , 2022 , Conference)This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric ... -
Structural health monitoring with self-organizing maps and artificial neural networks
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Inman D. ( Springer New York LLC , 2020 , Conference)The use of self-organizing maps and artificial neural networks for structural health monitoring is presented in this paper. The authors recently developed a nonparametric structural damage detection algorithm for extracting ...

