• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonparametric structural damage detection algorithm for ambient vibration response: Utilizing artificial neural networks and self-organizing maps

    Thumbnail
    التاريخ
    2016
    المؤلف
    Abdeljaber, Osama
    Avci, Onur
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This study presentes a new nonparametric structural damage detection algorithm that integrates self-organizing maps with a pattern-recognition neural network to quantify and locate structural damage. In this algorithm, self-organizing maps are used to extract a number of damage indices from the ambient vibration response of the monitored structure. The presented study is unique because it demonstrates the development of a nonparametric vibration-based damage detection algorithm that utilizes self-organizing maps to extract meaningful damage indices from ambient vibration signals in the time domain. The ability of the algorithm to identify damage was demonstrated analytically using a finite-element model of a hot-rolled steel grid structure. The algorithm successfully located the structural damage under several damage cases, including damage resulting from local stiffness loss in members and damage resulting from changes in boundary conditions. A sensitivity study was also conducted to evaluate the effects of noise on the computed damage indices. The algorithm was proved to be successful even when the signals are noise-contaminated. 2016 American Society of Civil Engineers.
    DOI/handle
    http://dx.doi.org/10.1061/(ASCE)AE.1943-5568.0000205
    http://hdl.handle.net/10576/22461
    المجموعات
    • الهندسة المدنية [‎865‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.... more authors ... less authors ( Springer , 2022 , Conference)
      Monitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural ...
    • Thumbnail

      Self-organizing maps for structural damage detection: A novel unsupervised vibration-based algorithm 

      Avci, Onur; Abdeljaber, Osama ( American Society of Civil Engineers (ASCE) , 2016 , Article)
      The study presented in this paper is arguably the first study to use a self-organizing map (SOM) for global structural damage detection. A novel unsupervised vibration-based damage detection algorithm is introduced using ...
    • Thumbnail

      Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan ( Springer , 2022 , Conference)
      This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video