• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated detection of anomalies in sewer closed circuit television videos using proportional data modeling

    Thumbnail
    التاريخ
    2016
    المؤلف
    Moradi, Saeed
    Zayed, Tarek
    Hawari, Alaa H.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Sewer pipeline condition information is usually collected using closed circuit television (CCTV). Moreover, in order to evaluate the condition of pipeline, data should be processed by a certified operator, which is time consuming, costly, and error prone due to operator's skillfulness or fatigue. Automating the detection of anomalies can reduce time and cost of inspection while ensuring the accuracy and quality of assessment. However, considering various types of defects in sewer pipelines and numerous patterns of each, it seems to be difficult to detect the defects using computer vision techniques. This paper presents an efficient anomaly detection algorithm to support automated detection of sewer defects from data obtained from CCTV inspection videos. In this model Hidden Markov Model (HMM) for proportional data modeling is employed theoretically and its performance of anomaly detection in an example of sewer CCTV videos has been assessed. The algorithm consists of modeling conditions considered as normal and detecting outliers to this model.
    DOI/handle
    http://hdl.handle.net/10576/22689
    المجموعات
    • الهندسة المدنية [‎867‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection 

      Boashash B.; Azemi G.; Ali Khan N. ( Elsevier Ltd , 2015 , Article)
      This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). ...
    • Thumbnail

      Drone-type-Set: Drone types detection benchmark for drone detection and tracking 

      AlDosari, Khloud; Osman, AIbtisam; Elharrouss, Omar; Al-Maadeed, Somaya; Chaari, Mohamed Zied ( Institute of Electrical and Electronics Engineers Inc. , 2024 , Conference)
      The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, ...
    • Thumbnail

      Detection of Appliance-Level Abnormal Energy Consumption in Buildings Using Autoencoders and Micro-moments 

      Himeur, Yassine; Alsalemi, Abdullah; Bensaali, Faycal; Amira, Abbes ( Springer Science and Business Media Deutschland GmbH , 2022 , Conference)
      The detection of anomalous energy usage could help significantly in signaling energy wastage and identifying faulty appliances, especially if the individual power traces are analyzed. To that end, this paper proposes a ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video