• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DID I SEE IT BEFORE? RETRIEVING PREVIOUSLY CHECKED CLAIMS OVER TWITTER

    Thumbnail
    عرض / فتح
    Watheq Mansour _ OGS Approved Thesis.pdf (1.591Mb)
    التاريخ
    2022-01
    المؤلف
    MANSOUR,WATHEQ AHMAD
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the proliferation of fake news in the last few years, especially during COVID- 19, combating the spread of misinformation has become a social and political urgent need. Fact-checkers and journalists need to identify claims that were previously verified by a reputable fact-checking organization before inspecting the claim veracity. Many claims showed up repeatedly but at different time periods and different forms. In this thesis, we propose an automated approach to retrieve claims that have been already manually-verified by professional fact-checkers. Our proposed approach uses recent powerful BERT (BERT is a Transformer-based machine learning technique that can be used to address several Natural Language Processing problems effectively) variants as rerankers in monoBERT fashion. MonoBERT is a point-wise ranking approach that uses a BERT-based model to assign a relevance score for query-document pair. Additionally, we study the impact of using different fields of the verified claim during training and inference phases. Experimental results show that our proposed pipeline outperforms the state-of-the-art approaches on two public English datasets and one Arabic dataset by a remarkable margin. Moreover, we are the first to develop a system for the Arabic language.
    DOI/handle
    http://hdl.handle.net/10576/26373
    المجموعات
    • الحوسبة [‎111‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video