• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multifunctional Oil Absorption with Macroporous Polystyrene Fibers Incorporating Silver-Doped ZnO

    Thumbnail
    View/Open
    acsomega.0c05683.pdf (12.67Mb)
    Date
    2021
    Author
    El-Samak A.A.
    Ponnamma D.
    Hassan M.K.
    Adham S.
    Karim A.
    Ammar A.
    Alser M.
    Shurbaji S.
    Eltai N.O.
    Al-Maadeed M.A.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Hydrophobic microporous polystyrene (PS) fibers are fabricated by a solvent-induced phase-separation-assisted electrospinning method. Zinc oxide (ZnO) and silver-doped zinc oxide (Ag-ZnO) nanomaterials with variable morphologies are added to the PS fibers, to investigate the influence of multifunctional nanofiller addition on the porosity and consequent oil-adsorbing properties for different oil types. The doping of silver as well as the uniformity in particle distribution are confirmed by scanning electron microscopy and the energy-dispersive spectral analyses. The porosity of the fibers and their crystallinity effect depend on the hydrophobicity and surface properties of these microporous nanofilled fibers. Ag-ZnO, specifically in 2 wt %, enhanced the pore size and distribution in PS porous fibers, thereby enhancing the oil-adsorbing property and its hydrophobicity. In-depth analysis of the oil adsorption mechanism is done for the fibers, both qualitatively and quantitatively, to demonstrate its correlation with the structural integrity of the fibers. The PS/2Ag-ZnO composite also exhibits the highest antibacterial performance against Staphylococcus aureus, a general indication of antibiological fouling properties of these oil-separating films. The antifouling/antibacterial activity of the nanoparticles and high oil sorption capacity of the highly porous PS composites show great potential for use in water-treatment-related applications.
    DOI/handle
    http://dx.doi.org/10.1021/acsomega.0c05683
    http://hdl.handle.net/10576/27444
    Collections
    • Biomedical Research Center Research [‎787‎ items ]
    • Center for Advanced Materials Research [‎1497‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video