• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HVDC shunt tap based on three single-phase half-bridge series-connected MMCs operated under 2L modulation

    Thumbnail
    Date
    2019
    Author
    Elserougi, A.
    Massoud, Ahmed
    Ahmed, S.
    Metadata
    Show full item record
    Abstract
    In this study, a cost-effective HVDC shunt tap with low-number of relatively low-voltage semiconductor devices and small-sized passive components is proposed. The proposed architecture is based on employing three single-phase half-bridge Modular Multilevel Converters (MMCs), where the DC sides of MMCs are connected in series across the total DC-link voltage. The MMCs are adopted instead of conventional Two-Level Voltage Source Converters (2L-VSCs) to avoid the complications of series connection of Insulated Gate Bipolar Transistors (IGBTs). The involved MMCs in the suggested architecture are operated with the conventional 2L modulation, which results in insignificant arm inductors and Sub-Modules (SMs) capacitances (in range of ?H and ?F, respectively). This, in turn, affects positively the converter cost and footprint. Each arm of the involved MMCs can be considered as a high-voltage valve of a 2L-VSC. To maintain the balance of SMs capacitors, each arm of the involved (N + 1)-level MMC has an extra SM (a balancing SM) to select N out of N + 1 SMs during the turn-off condition. The operational concept, design, and assessment of the proposed architecture are presented in this study. Simulation results are provided for substantiation of the proposed concept. Finally, a scaled down single-phase prototype is used for experimental validation.
    DOI/handle
    http://dx.doi.org/10.1049/iet-gtd.2018.6424
    http://hdl.handle.net/10576/28755
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video