• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid.pdf (10.53Mb)
    Date
    2022
    Author
    Shezan, S. A.
    Ishraque, M. F.
    Muyeen, S. M.
    Arifuzzaman, S. M.
    Paul, L. C.
    Das, S. K.
    Sarker, S. K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The optimized design of a freestanding hybrid microgrid for various distinct dispatch controls is assessed in this paper, which considers the optimal sizes of individual components, system response, and reliability analysis. The effective design and management of stand-alone islanded hybrid smartgrids are getting increasingly importance and influences as the prevalence of renewable energy in microgrids grows. Melville Island, off the coast of eastern Queensland, Australia, is taken as the test microgrid in this study. For the optimal sizing and techno-economic assessment of the intended hybrid microgrid system consist of of solar diesel generator, PV, battery storage, and wind turbine, four dispatch approaches have been unitized: load following, generator order, combined dispatch, and cycle charging strategy. The proposed off-grid microgrid's CO2 emissions, total net present cost (NPC), and the Levelized cost of energy (LCOE) have all been optimized. In HOMER software, all the possible dispatch algorithms were analyzed, and the power system responses and reliability study were carried out using DIgSILENT PowerFactory. The findings of the study are useful for determining the optimum hybrid combination and available resources for the best performance of an off-grid microgrid employing various dispatch mechanisms. Following the simulation data, load-following is the best dispatch mechanism for stand-alone microgrid architecture since it has the lowest LCOE and NPC.
    DOI/handle
    http://dx.doi.org/10.1016/j.ecmx.2022.100192
    http://hdl.handle.net/10576/28888
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video