• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mediation of carbonate minerals formation by aerobic bacterial strains isolated from Dohat Faishakh Sabkha in Qatar

    Thumbnail
    View/Open
    qproc.2016.qulss.41.pdf (161.9Kb)
    Date
    2016
    Author
    Al Disi, Zulfa A.
    Jaoua, Samir
    Bontognali, Tomaso R.R.
    Attia, Essam S.M.
    Al-Kuwari, Hamad A.S.
    Zouari, Nabil
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Carbon dioxide (CO2) is increasingly released to the environment as a result of the extensive use of various industrial facilities. According to the Intergovernmental Panel on Climate Change Report (2015), cumulative emissions of CO2 largely determine global mean surface warming by the late 21st century and beyond". Different technologies can be applied for capturing and storing CO2 such as sequestration and carbonate mineral storage. Biominerals are of great importance due to their huge impact on the global biogeochemical cycle. Carbonates such as limestone and dolomite are important carbon reservoirs. Calcium carbonate formation and its burial in marine sediments account for approximately 80% of total carbon removal from the Earth's surface by abiotic and biotic precipitation. The biotic precipitation of calcium carbonates, is performed by various organisms, including bacteria, and has been widely reported and discussed in the literature, while, the formation of high-magnesium calcites is extremely challenging, due to the high level of hydration of Mg2+ ions, which promote the formation of Mg-free aragonite, rather than calcite. The dynamic evaporitic systems characteristic of sabkhas are crucial for the precipitation of minerals, and a role for microorganisms in sabkhas in the process of mineralization has been proposed. In this study the Dohat Faishakh Sabkha in Qatar was investigated for evidenc of the role of aerobic bacteria in mediating the formation of high magnesium carbonates and dolomite, two minerals that commonly occur in the sabkha sediments. 29 strains of aerobic microbes isolated from the sabkha and identified by 16S rDNA sequencing as belonging to the genera Bacillus, Salinivibrio, Staphylococcus and, primarily, Virgibacillus. All strains examined caused the pH of the artificial growth medium to increase from 7 to 8.5; however, not all were capable of mediating mineral formation. Only Salinivibrio and Virgibacillus spp. isolates mediated the formation of detectable solid phases within the agar plates. Light microscopy, scanning electron microscopy energy dispersive X-ray (SEM/EDX), and X-ray diffraction (XRD) analyses indicate that the solid phase produced in the presence of these bacterial strains is MgCa(CO3)2 with a MgCO3 mol% varying from 0% to 40%. The results of these laboratory experiments suggested that, in the Dohat Faishakh Sabkha, aerobic bacteria may contribute in the formation o very high Mg calcite, a mineral that is considered the precursor of ordered dolomite.
    URI
    https://doi.org/10.5339/qproc.2016.qulss.41
    DOI/handle
    http://hdl.handle.net/10576/28946
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Center for Sustainable Development Research [‎339‎ items ]
    • Central Laboratories Unit Research [‎113‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video