• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new configurable topology for multilevel inverter with reduced switching components

    Thumbnail
    Date
    2020
    Author
    Siddique, Marif Daula
    Iqbal, Atif
    Memon, M. A.
    Mekhilef, Saad
    Metadata
    Show full item record
    Abstract
    Multilevel inverters (MLI) are now becoming an important element for medium-voltage highpower applications. A low switch count MLIs are more popular due to their high efficiency, low cost, and easy control for the output having a higher number of levels. A new MLI topology for single-phase applications based on switched dc voltage source with reduced switch count is proposed in the paper. The presented topology is developed with the constraints of lesser blocking voltage of the switches with a higher number of levels at the output using a lower number of components. The proposed topology can also work in the symmetrical and asymmetrical configuration. Selective harmonic elimination (SHE) technique is applied to synthesize the staircase output voltages with eliminations of lower order harmonics by optimized computation of angles for switching operation. The comparative studies with the MLIs recommended in recent times show the importance of the proposed MLI structure in terms of reduced switch count and lower voltage stresses across switches in both asymmetrical and symmetrical configurations. The experimental results are presented to confirm the performance of the proposed topology.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3030951
    http://hdl.handle.net/10576/29149
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video