• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simultaneous distributed estimation and attack detection/isolation in social networks: Structural observability, kronecker-product network, and chi-square detector

    Thumbnail
    التاريخ
    2021
    المؤلف
    Doostmohammadiany, M.
    Charalambous, T.
    Shafie-Khah, M.
    Meskin, Nader
    Khan, U. A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper considers distributed estimation of linear systems when the state observations are corrupted with Gaussian noise of unbounded support and under possible random adversarial attacks. We consider sensors equipped with single time-scale estimators and local chi-square $(\chi^{2})$ detectors to simultaneously observe the states, share information, fuse the noise/attack-corrupted data locally, and detect possible anomalies in their own observations. While this scheme is applicable to a wide variety of systems associated with full-rank (invertible) matrices, we discuss it within the context of distributed inference in social networks. The proposed technique outperforms existing results in the sense that: (i) we consider Gaussian noise with no simplifying upper-bound assumption on the support; (ii) all existing $\chi^{2}$-based techniques are centralized while our proposed technique is distributed, where the sensors locally detect attacks, with no central coordinator, using specific probabilistic thresholds; and (iii) no local-observability assumption at a sensor is made, which makes our method feasible for large-scale social networks. Moreover, we consider a Linear Matrix Inequalities (LMI) approach to design block-diagonal gain (estimator) matrices under appropriate constraints for isolating the attacks.
    DOI/handle
    http://dx.doi.org/10.1109/ICAS49788.2021.9551162
    http://hdl.handle.net/10576/29747
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video