• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An IV-SVM-based approach for identification of state-space LPV models under generic noise conditions

    Thumbnail
    التاريخ
    2015
    المؤلف
    Rizvi, S.Z.
    Mohammadpour J.
    Tcth, R.
    Meskin, Nader
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper presents a nonparametric identification method for state-space linear parameter-varying (LPV) models using a modified support vector machine (SVM) approach. While most LPV identification schemes in the state-space form fall under the general category of parametric methods, regularization-based SVMs provide a viable alternative to model scheduling dependencies, without the need of specifying the dependency structure and with an attractive bias-variance trade-off. In this paper, a solution is proposed for nonparametric identification of LPV state-space models in terms of least-squares SVMs (LS-SVM) and is then extended in a way that the proposed estimation is robust to errors in the noise model estimation. The so-called instrumental variables (IV) method has been used in linear system identification for quite some time, and has recently seen its application in the identification of both nonlinear and LPV systems in the input-output (IO) form. The IV method reduces the bias in estimated LPV state-space models in case the noise model is not estimated properly or is unknown. In the proposed method of this paper, the attractive bias-variance trade-off properties of LS-SVMs are combined with statistical properties of IV-based methods to give robust estimates of the functional dependencies. Numerical examples are provided to compare the performances of the proposed IV-based technique with the LS-SVM-based LPV model identification methods. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/CDC.2015.7403385
    http://hdl.handle.net/10576/29807
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video