• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parameter Set-mapping using kernel-based PCA for linear parameter-varying systems

    Thumbnail
    التاريخ
    2014
    المؤلف
    Rizvi, S.Z.
    Mohammadpour, J.
    Toth, R.
    Meskin, Nader
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper proposes a method for reduction of scheduling dependency in linear parameter-varying (LPV) systems. In particular, both the dimension of the scheduling variable and the corresponding scheduling region are shrunk using kernel-based principal component analysis (PCA). Kernel PCA corresponds to linear PCA that is performed in a high-dimensional feature space, allowing the extension of linear PCA to nonlinear dimensionality reduction. Hence, it enables the reduction of complicated coefficient dependencies which cannot be simplified in a linear subspace, giving kernel PCA an advantage over other linear techniques. This corresponds to mapping the original scheduling variables to a set of lower dimensional variables via a nonlinear mapping. However, to recover the original coefficient functions of the model, this nonlinear mapping is needed to be inverted. Such an inversion is not straightforward. The reduced scheduling variables are a nonlinear expansion of the original scheduling variables into a high-dimensional feature space, an inverse mapping for which is not available. Therefore, we cannot generally assert that such an expansion has a 'pre-image' in the original scheduling region. While certain pre-image approximation algorithms are found in the literature for Gaussian kernel-based PCA, we aim to generalize the pre-image estimation algorithm to other commonly used kernels, and formulate an iterative pre-image estimation rule. Finally, we consider the case study of a physical system described by an LPV model and compare the performance of linear and kernel PCA-based LPV model reduction. 2014 EUCA.
    DOI/handle
    http://dx.doi.org/10.1109/ECC.2014.6862571
    http://hdl.handle.net/10576/29813
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video