• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydrothermally grown ZnO electrodes for improved organic photovoltaic devices

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Steiger P.
    Zhang J.
    Harrabi K.
    Hussein I.A.
    Downing J.M.
    McLachlan M.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Here we report a simple, solution based processing route for the formation of large surface area electrodes resulting in improved organic photovoltaic devices when compared with conventional planar electrodes. The nanostructured electrode arrays are formed using hydrothermally grown ZnO nanorods, subsequently infiltrated with blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) and indene-C60 bisadduct (IC60BA) as photoactive materials. This well studied organic photoactive blend allows the composition/processing/performance relationships to be elucidated. Using simple solution based processing the resultant nanostructured devices exhibited a maximum power conversion efficiency (PCE) of 2.5% compared with the best planar analogues having a PCE of around 1%. We provide detailed structural, optical and electrical characterization of the nanorod arrays, active layers and completed devices giving an insight into the influence of composition and processing on performance. Devices were fabricated in the desirable inverse geometry, allowing oxidation resistant high work-function top electrodes to be used and importantly to support the hydrothermal growth of nanorods on the bottom electrode — all processing was carried out under ambient conditions and without the insertion of a hole transport layer below the anode. The nanorods were successfully filled with the active layer materials by carrying out a brief melt processing of a spin-cast top layer followed by a subsequent thermal anneal which was identified as an essential step for the fabrication of operational devices. The growth method used for nanorod fabrication and the active layer processing are both inherently scalable, thus we present a complete and facile route for the formation of nanostructured electron acceptor layers that are suitable for high performance organic active layers.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034639918&doi=10.1016%2fj.tsf.2017.11.021&partnerID=40&md5=2ebb3c8068f84d8f84206dfc65aa420e
    DOI/handle
    http://dx.doi.org/10.1016/j.tsf.2017.11.021
    http://hdl.handle.net/10576/30424
    Collections
    • Chemical Engineering [‎1196‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video