عرض بسيط للتسجيلة

المؤلفAvci O.
المؤلفAbdeljaber O.
المؤلفKiranyaz, Mustafa Serkan
المؤلفHussein M.
المؤلفGabbouj M.
المؤلفInman D.
تاريخ الإتاحة2022-04-26T12:31:17Z
تاريخ النشر2022
اسم المنشورConference Proceedings of the Society for Experimental Mechanics Series
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-030-77143-0_2
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85119000306&doi=10.1007%2f978-3-030-77143-0_2&partnerID=40&md5=bc7da61ccfc45713e2c1eae6ecf59efd
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30580
الملخصMonitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural Damage Detection (SDD) fields have been topics of ongoing research over the years to explore and verify different monitoring techniques and damage detection and localization procedures. In an attempt to compare performances of different methods, benchmark datasets are valuable resources since the data is made available to researchers enabling side-by-side comparisons. This paper presents a new experimental benchmark dataset generated from tests on a large-scale laboratory structure. The primary goal of the authors was to explore brand-new damage detection and quantification methodologies for efficient monitoring of structures. For this purpose, a large-scale steel grid structure with footprint dimensions of 4.2 m × 4.2 m was constructed in laboratory environment and it has been used as a test bed by the authors. The structural members of the structure are all IPE120 hot-rolled steel cross sections. The simulation of structural damage was simply loosening the bolts at one of the beam-to-girder connections, which is a slight change of rotational stiffness at the joint of the steel grid structure. The authors shared the dataset for 1 undamaged and 30 damaged conditions and published it on a public website as a new benchmark problem for structural damage detection at http://www.structuralvibration.com/benchmark/ so that other researchers can use the data and test algorithms. The authors also shared one of the damage detection tools they used, One-Dimensional Convolutional Neural Networks (1D-CNNs). The application codes, configuration files, and accompanied components of the 1D-CNNs package are available for viewers at http://www.structuralvibration.com/cnns/.
اللغةen
الناشرSpringer
الموضوعConvolutional neural networks
Damage detection
Hot rolled steel
Hot rolling
Large dataset
Life cycle
Statistical tests
Structural health monitoring
Benchmark datasets
Benchmark problems
Damage Identification
Damage localization
Damage quantification
Grid structures
Large-scales
Monitoring damage
Steel grids
Structural damage detection
Benchmarking
العنوانA New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure
النوعConference Paper
الصفحات15-22
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة