Real-Time Glaucoma Detection from Digital Fundus Images Using Self-ONNs
Date
2021Author
Devecioglu O.C.Malik J.
Ince T.
Kiranyaz, Mustafa Serkan
Atalay E.
Gabbouj M.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.
Collections
- Electrical Engineering [2610 items ]
Related items
Showing items related by title, author, creator and subject.
-
Self-organized Operational Neural Networks with Generative Neurons
Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ... -
Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Sirinukunwattana, Korsuk; Raza, Shan E Ahmed; Tsang, Yee-Wah; Snead, David R. J.; Cree, Ian A.; Rajpoot, Nasir M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Article)Detection and classification of cell nuclei in histopathology images of cancerous tissue stained with the standard hematoxylin and eosin stain is a challenging task due to cellular heterogeneity. Deep learning approaches ... -
Operational neural networks
Kiranyaz, Mustafa Serkan; Ince T.; Iosifidis A.; Gabbouj M. ( Springer , 2020 , Article)Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function ...