• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time throughput prediction for cognitive Wi-Fi networks

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2020
    المؤلف
    Khan M.A.
    Hamila R.
    Al-Emadi N.A.
    Kiranyaz, Mustafa Serkan
    Gabbouj M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Wi-Fi as a wireless networking technology has become a widely acceptable commonplace. Over the course of time, the applications landscape of Wi-Fi networks is growing tremendously. The proliferation of new services is driving the industry to adopt novel and agile approaches to ensure the quality of experience delivered to the end user. To enhance end user experience, transmission throughput is an important metric that has a strong impact on the end-user quality of experience. The accurate real-time prediction of throughput can bring several new possibilities to enhance user experience in future self-organizing cognitive networks. However the real-time prediction of transmission throughput is challenging due to the dependency on several parameters. Previous studies on throughput prediction are primarily focused on non real-time prediction in less-dynamic networks. The studies also do not provide high accuracy as required in cognitive networks for efficient decision making. The purpose of this study is to use data-driven machine learning (ML) techniques and evaluating their accuracy and efficiency to predict the transmission throughput in Wi-Fi networks. Four algorithms are used namely multi-layer perceptrons (MLP), support vector regressors (SVR), decision trees (DT) and random forests (RF). It is widely understood that the accuracy and efficiency of machine learning (ML) algorithms hugely depend upon the datasets being used to train the model. Hence, this study proposes two distinct data models for creating ML-ready datasets using feature engineering. The accuracy of each ML algorithm over these datasets is evaluated. The evaluation results show a maximum prediction accuracy of 96.2% using MLP algorithm, followed by DT (94.5%), RF (93.3%) and SVR (91.0%) respectively. Furthermore, the complexity analysis is also presented to support the adaptation of such schemes in real-time applications.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075979028&doi=10.1016%2fj.jnca.2019.102499&partnerID=40&md5=9db1b6948786138a9b78ee55f6c94646
    DOI/handle
    http://dx.doi.org/10.1016/j.jnca.2019.102499
    http://hdl.handle.net/10576/30612
    المجموعات
    • الهندسة الكهربائية [‎2823‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video