Efficiency validation of one dimensional convolutional neural networks for structural damage detection using a SHM benchmark data
التاريخ
2018المؤلف
Avci O.Abdeljaber O.
Kiranyaz M.S.
Boashash B.
Sodano H.
Inman D.J.
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
In this paper, a novel one dimensional convolution neural network (1D-CNN) based structural damage assessment technique is validated with a benchmark study published by IASC-ASCE Structural Health Monitoring Task Group in 2003. In contrast with predominant machine learning based structural damage detection techniques of the literature, the technique shown in this paper runs without manual feature extraction or preprocessing stages. It runs directly on the raw vibration data. In CNNs, the stages of feature extraction and feature classification are merged into one stage; therefore, the proposed technique is efficient, feasible and economical. Utilizing the optimal features learned by 1D CNNs, the proposed CNN-based technique considerably improves the classification efficiency and accuracy. The performance improvement of the proposed technique is assessed by calculating the "Probability of Damage" values for damage estimations. The unseen structural damage cases between the two extreme end structural cases (zero damage and total damage) were successfully identified. Consequently, it is validated that the improved CNN-based technique is efficient since it predicted the level of damage consistently with the structural damage cases defined in the existing benchmark.
معرّف المصادر الموحد
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058819068&partnerID=40&md5=5ddaffe3fc16a523e855afd8c52f8f43DOI/handle
http://hdl.handle.net/10576/30622المجموعات
- الهندسة الكهربائية [2649 items ]
وثائق ذات صلة
عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.
-
A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.... more authors ... less authors ( Springer , 2022 , Conference Paper)Monitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural ... -
Self-organizing maps for structural damage detection: A novel unsupervised vibration-based algorithm
Avci, Onur; Abdeljaber, Osama ( American Society of Civil Engineers (ASCE) , 2016 , Article)The study presented in this paper is arguably the first study to use a self-organizing map (SOM) for global structural damage detection. A novel unsupervised vibration-based damage detection algorithm is introduced using ... -
A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications
Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.J.... more authors ... less authors ( Academic Press , 2021 , Article Review)Monitoring structural damage is extremely important for sustaining and preserving the service life of civil structures. While successful monitoring provides resolute and staunch information on the health, serviceability, ...