• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Main article (2.505Mb)
    Date
    2022-07-15
    Author
    Hareb, Al-Jabri
    Das, Probir
    Khan, Shoyeb
    AbdulQuadir, Mohammad
    Thaher, Mehmoud Ibrahim
    Hoekman, Kent
    Hawari, Alaa H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Marine microalgae biomass could offer a viable feedstock for sustainably producing biofuel by hydrothermal liquefaction. In this study, five promising marine microalgae (i.e., Tetraselmis, Picochlorum, Synechococcus, Chroococcidiopsis, and Dunaliella), having different characteristics, were studied for biocrude oil production. The overall microalgal biocrude oil production process was divided into six unit operations: water supply, CO2 supply, nutrient supply, cultivation, harvesting, and HTL process. Models were developed for these unit processes such that once the key parameters of any unit process are known, the corresponding energy consumption could be determined. While the selection of the cultivation site influenced the energy requirements for sourcing seawater and CO2, the characteristics of the strain influenced energy requirements for the other four-unit operations. A cradle-to-grave concept was assumed to compare the life cycle assessment of the five strains. Among these strains, Tetraselmis sp. provided the most favorable energy balance with a net energy gain of 1.77 GJ/barrel of biocrude, an energy return on investment value of 2.81, and GHG reduction potential of 129 kg CO2 equivalent/barrel of biocrude. Further investigation with sensitivity analysis confirmed that the net energy yield for Tetraselmis sp. was least affected by a ±10% variation of the parameters of the unit processes.
    URI
    https://www.sciencedirect.com/science/article/pii/S036054422200857X
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2022.123954
    http://hdl.handle.net/10576/30939
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video