• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of novel halo- and thermotolerant desert cyanobacteria for phycobiliprotein production

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1359511322001337-main (1).pdf (2.902Mb)
    Date
    2022-04-17
    Author
    Touria, Bounnit
    Saadaoui, Imen
    Ghasal, Ghamza Al
    Rasheed, Rihab
    Dalgamouni, Tasneem
    Jabri, Hareb Al
    Leroy, Eric
    Legrand, Jack
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Four indigenous cyanobacteria isolates identified as QUCCCM 34: Chroococcidiopsis sp., QUCCCM 54: Pleurocapsa sp., QUCCCM 77: Euhalothece sp., and QUCCCM 129: Cyanobacterium sp. were investigated during this study. Temperatures and salinities observed in outdoor were reproduced indoor, using small-scale photobioreactors, and culture conditions were optimized for maximum biomass and phycobiliprotein productions. The strains showed their halo and thermotolerance capacity. The highest biomass productivity was 125 ± 1.1 mg x L−1 d−1 for Pleurocapsa sp.at 30 °C–40 ppt. The major phycobiliproteins were phycocyanin, and the content was strain and age dependent. Pleurocapsa sp., Euhalothece sp., and Cyanobacterium sp reached their highest phycocyanin content (up to 160 ± 2.6 mgPC gx-1) after 4, 8, and 10 days, respectively, while it was only up to 100 ± 3.5 mgPC gx-1 for Chroococcidiopsis sp. at day 4, 40 °C–60 ppt. Increasing temperature and salinity stimulated the phycocyanin synthesis in Chroococcidiopsis sp, Pleurocapsa sp. and Euhalothece sp., whereas only salinity increment enhanced the pigments production(both phycoerythrin and phycocyanin) for Cyanobacterium sp. Finally, all the pigment extracts exhibited an antioxidant and radical scavenging activity which were maximal for the extracts from Pleurocapsa sp., with ≈ 60 mM Trolox equivalent gx−1 and 50%, respectively.
    URI
    https://www.sciencedirect.com/science/article/pii/S1359511322001337
    DOI/handle
    http://dx.doi.org/10.1016/j.procbio.2022.04.017
    http://hdl.handle.net/10576/31390
    Collections
    • Center for Sustainable Development Research [‎340‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video