• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Ashfaq M.Y.
    Al-Ghouti M.A.
    Da'na D.A.
    Qiblawey H.
    Zouari N.
    Metadata
    Show full item record
    Abstract
    In seawater reverse osmosis, membrane scaling is one of the major issues affecting its widespread application in the desalination industry. In this paper, the effect of concentration of calcium and sulfate ions from 20 to 150 mM on calcium sulfate scaling of reverse osmosis (RO) and graphene oxide functionalized RO membranes was investigated. It was noted that the permeate flux declined more than 90% when the concentration of ions was increased to 50?150 mM. Principal component analysis was applied to the flux decline over time data, which helped to cluster the data sets based on the extent of membrane scaling at different conditions. The results of scanning electron microscopy showed that the morphology of crystals varied with the concentration from rod shaped to broad rosette structures. Furthermore, it was also found that the membrane surface was fully covered with precipitates, which resulted from both bulk and surface crystallization at higher concentrations of ions in feedwater. The results of X-ray diffraction confirmed that the precipitates formed on the membrane at different concentrations belong to gypsum (CaSO4�2H2O). The results of Fourier Transform Infrared spectroscopy helped to understand the interaction of gypsum with functional groups (?OH, ?COOH, C[sbnd]H) of the membrane, which also varied at different concentrations. The contact angle analysis of the scaled membrane was also done to investigate the effect of scaling on the hydrophilicity of the membrane surface, thereby, affecting its inter/intra foulant interactions.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092204821&doi=http://dx.doi.org/10.1016%2fj.jmrt.2020.09.117&partnerID=40&md5=5d8484c877132deaa288935a08483119
    DOI/handle
    http://dx.doi.org/10.1016/j.jmrt.2020.09.117
    http://hdl.handle.net/10576/31776
    Collections
    • Biological & Environmental Sciences [‎933‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video