• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Accuracy of artificial intelligence-assisted detection of Oral Squamous Cell Carcinoma: A systematic review and meta-analysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Main Article (1.588Mb)
    Date
    2022-08-02
    Author
    Ibrahim, Elmakaty
    Elmarasi, Mohamed
    Amarah, Ahmed
    Abdo, Ruba
    Malki, Mohammed Imad
    Metadata
    Show full item record
    Abstract
    Oral Squamous Cell Carcinoma (OSCC) is an aggressive tumor with a poor prognosis. Accurate and timely diagnosis is therefore essential for reducing the burden of advanced disease and improving outcomes. In this meta-analysis, we evaluated the accuracy of artificial intelligence (AI)-assisted technologies in detecting OSCC. We included studies that validated any diagnostic modality that used AI to detect OSCC. A search was performed in six databases: PubMed, Embase, Scopus, Cochrane Library, ProQuest, and Web of Science up to 15 Mar 2022. The Quality Assessment Tool for Diagnostic Accuracy Studies was used to evaluate the included studies' quality, while the Split Component Synthesis method was utilized to quantitatively synthesize the pooled diagnostic efficacy estimates. We considered 16 out of the 566 yielded studies, which included twelve different AI models with a total of 6606 samples. The summary sensitivity, summary specificity, positive and negative likelihood ratios as well as the pooled diagnostic odds ratio were 92.0 % (95 % confidence interval [CI] 86.7–95.4 %), 91.9 % (95 % CI 86.5–95.3 %), 11.4 (95 % CI 6.74–19.2), 0.087 (95 % CI 0.051–0.146) and 132 (95 % CI 62.6–277), respectively. Our findings support the capability of AI-assisted systems to detect OSCC with high accuracy, potentially aiding the histopathological examination in early diagnosis, yet more prospective studies are needed to justify their use in the real population.
    URI
    https://www.sciencedirect.com/science/article/pii/S1040842822002013
    DOI/handle
    http://dx.doi.org/10.1016/j.critrevonc.2022.103777
    http://hdl.handle.net/10576/33307
    Collections
    • Medicine Research [‎1794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video