• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly efficient methanol oxidation reaction on durable Co9S8 @N, S-doped CNT catalyst for methanol fuel cell applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Ashok, Anchu
    Kumar, Anand
    Yuda, Afdhal
    Al Ashraf, Abdullah
    Metadata
    Show full item record
    Abstract
    The implementation of direct methanol fuel cells is seen as a reliable factor in the future energy mix. Efficient energy conversion from methanol requires an active and durable catalyst to drive the anodic methanol oxidation reaction (MOR) in direct methanol fuel cells. As an alternative to high cost noble metals, cobalt-based electrocatalysts are considered potential replacements that meet the high activity and long-term stability for MOR. Herein, we report the preparation of hierarchical Co9S8 nanowires trapped in N-doped carbon nanotubes (N,S-Co@CNT) derived from melamine showing high activity for MOR in alkaline medium. In order to identify the main active sites, we synthesized cobalt particles embedded in carbon structures in absence of a sulphur source (Co@CNT) and evaluated its performance for MOR. The material characterization shows that adding sulphur during pyrolysis enhances the surface area, pore size and lattice defect. In addition, the morphology changes from hemi-spherical particles to nanowires, that significantly improves the electrochemical properties. The current density of N,S-Co@CNT is exceptionally higher (5.5 times) and the onset potential of MOR is shifted to lower potential when compared to Co@CNT. The enhanced activity, durability and stability of N,S-Co@CNT is ascribed to the unique hierarchical structure and surface properties.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2021.07.026
    http://hdl.handle.net/10576/34038
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video