• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of the modified hybrid particle on the corrosion inhibition performance of polyolefin based coatings for carbon steel

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2468217922000508-main.pdf (3.946Mb)
    Date
    2022
    Author
    Habib, Sehrish
    Nawaz, Muddasir
    Kahraman, Ramazan
    Ahmed, Elsadig Mahdi
    Shakoor, R.A.
    Metadata
    Show full item record
    Abstract
    This work reports the corrosion inhibition performance of modified hybrid particles reinforced into polyolefin matrix. The cerium oxide coated zinc oxide hybrid particles (CeO2@ZnO) were synthesized via a chemical precipitation process. The synthesized hybrid particles were modified with benzotriazole (BTA, corrosion inhibitor). The modified hybrid particles were reinforced into a polyolefin matrix in 1 wt. % concentration. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), energy dispersive X-Ray spectroscopy (EDX), and X-ray photoelectron spectrometer (XPS) analysis techniques were employed to characterize synthesized and modified hybrid particles. The results demonstrated that ZnO possessed hexagonal morphology covered with spherical CeO2 particles. FTIR analysis revealed the presence of characteristic peaks of the modified hybrid particles. TGA analysis demonstrated good thermal stability of synthesized particles. UV-vis spectroscopic analysis confirmed the release of the inhibitor from hybrid particle, which was pH and time-dependent. The modified polymeric coatings' self-healing functioning was evaluated through Electrochemical impedance spectroscopic analysis. The results revealed the prominent corrosion inhibition performance of modified coatings compared to the blank polyolefin coatings, which is attributed to the efficient release of the inhibitor from hybrid particles, making these coatings a promising solution for the protection of steel.
    DOI/handle
    http://dx.doi.org/10.1016/j.jsamd.2022.100466
    http://hdl.handle.net/10576/34814
    Collections
    • Center for Advanced Materials Research [‎1569‎ items ]
    • Chemical Engineering [‎1249‎ items ]
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video