• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of coatings on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials: A focused review

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Qureshi, Zawar Alam
    Tariq, Hanan Abdurehman
    Shakoor, R.A.
    Kahraman, Ramazan
    AlQaradawi, Siham
    Metadata
    Show full item record
    Abstract
    The application of Lithium-ion batteries (LIBs) in portable electronics and electric vehicles (EVs) has increased in the past decade. Extended commercialization of LIBs for advanced applications requires the development of high-performance electrode materials. LiNi0.5Mn1.5O4 (Lithium Nickel Manganese Oxide referred to as LNMO) has attracted much attention as a cathode material due to its high voltage and energy density, lower cost, and environmental friendliness. However, LNMO cathodes are currently suffering from poor cyclability and capacity degradation at elevated temperatures. Many strategies have been suggested in the literature to address the challenges associated with numerous families of cathode materials. Among those, surface modification techniques like surface coatings have proven to be promising. Surface coatings have a good effect on the electrochemical performance of LNMO, as these result in increasing electronic and ionic conductivity, fast ions mobility and high diffusivity. Towards this direction, a systematic review of research progress carried out in the area of coated LNMO has been summarized. More precisely, the impact of numerous coating materials in improving cyclability and capacity retention at elevated temperatures of LNMO has been discussed along with a variety of coating synthesis technologies.
    DOI/handle
    http://dx.doi.org/10.1016/j.ceramint.2021.12.118
    http://hdl.handle.net/10576/34819
    Collections
    • Center for Advanced Materials Research [‎1633‎ items ]
    • Chemical Engineering [‎1272‎ items ]
    • Chemistry & Earth Sciences [‎615‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video