• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of silicon nitride and graphene nanoplatelets on the properties of aluminum metal matrix composites

    Thumbnail
    View/Open
    materials-14-01898.pdf (7.094Mb)
    Date
    2021
    Author
    Abdelatty, Rokaya
    Khan, Adnan
    Yusuf, Moinuddin
    Alashraf, Abdullah
    Shakoor, Rana A.
    Metadata
    Show full item record
    Abstract
    This research work aims at investigating the influence of a fixed content of silicon nitride (Si3N4) and varied contents of graphene nanoplatelets (GNPs) on the physical (density, structural, morphological) and mechanical properties (microhardness, nanoindentation) of Al-Si3N4-GNPs composites. The composites were fabricated by a microwave-assisted powder metallurgy route. The Si3N4 concentration was fixed at (5 wt.%) in Al-Si3N4-GNPs composites while the GNPs concentration was varied between (0 wt.%) to (1.5 wt.%) with an increment of (0.5 wt.%). The structural analysis indicates the formation of phase pure materials with high crystallinity. The microstructural analysis confirmed the presence of the Si3N4 and GNPs showing enhanced agglomeration with the increasing amount of GNPs. Moreover, the surface roughness of the synthesized composites increases with an increasing amount of GNPs reaching its maximum value (RMS = 65.32 nm) at 1.5 wt.% of GNPs. The Al-Si3N4-GNPs composites exhibit improved microhardness and promising load-indentation behavior during nanoindentation when compared to pure aluminum (Al). Moreover, Al-Si3N4-GNPs composites demonstrate higher values of compressive yield strength (CYS) and ultimate compressive strength (UCS) when compared to pure Al despite showing a declining trend with an increasing amount of GNPs in the matrix. Finally, a shear mode of fracture is prevalent in Al-Si3N4-GNPs composites under compression loading.
    DOI/handle
    http://dx.doi.org/10.3390/ma14081898
    http://hdl.handle.net/10576/34829
    Collections
    • Center for Advanced Materials Research [‎1497‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video