• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cerium oxide loaded with Gum Arabic as environmentally friendly anti-corrosion additive for protection of coated steel

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0264127520308972-main.pdf (6.181Mb)
    Date
    2021
    Author
    Nawaz, Muddasir
    Shakoor, R.A.
    Kahraman, Ramazan
    Montemor, M.F.
    Metadata
    Show full item record
    Abstract
    The depreciation of assets and safety threats because of corrosion has forced to develop eco-friendly and smarter corrosion protection strategies. In this study, natural Gum Arabic (GA) was used as a corrosion inhibitor and loaded into cerium oxide nanoparticles (CONPs) to develop an environment-friendly additive for corrosion protection of coated steel in the marine environment. This additive was uniformly dispersed into an epoxy formulation that was used to protect steel plates. Epoxy coatings containing CONPs, without GA, were also prepared as reference. High-Resolution Transmission Electron Microscopy (HR-TEM) and Fourier Transform infrared spectroscopy (FTIR) revealed the successful loading of GA into the CONPs. Thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) techniques confirmed approximately ⁓30.0 wt% loading of GA into the CONPs. Electrochemical impedance spectroscopy (EIS) demonstrated the anticorrosion properties of the epoxy coatings modified with the GA loaded CONPs when compared to reference coatings. The corrosion protection mechanism postulates that GA loaded CONPs act as a filler material for epoxy coating and it can also aid the recovery of the protective properties of the epoxy coating leading to the formation of a stable protective layer.
    DOI/handle
    http://dx.doi.org/10.1016/j.matdes.2020.109361
    http://hdl.handle.net/10576/34830
    Collections
    • Center for Advanced Materials Research [‎1607‎ items ]
    • Chemical Engineering [‎1262‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video