• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Expatriates' Housing Dispersal Outlook in a Rapidly Developing Metropolis Based on Urban Growth Predicted Using a Machine Learning Algorithm

    Thumbnail
    Date
    2021
    Author
    Ibrahim, Hatem
    Khattab, Ziad
    Khattab, Tamer
    Abraham, Revina
    Metadata
    Show full item record
    Abstract
    Housing dispersal in emerging cities should be investigated as it occurs to achieve a better understanding of future housing dispersal. In this study, housing preferences are analyzed in Doha Metropolitan Area based on Gordon's theory. Machine learning (especially the generalized adversarial network) is utilized to predict the future urban growth of the city. The housing dispersal of expatriates is visualized in the predicted urban growth map of Doha city based on an investigation of housing supply trends, household income levels, government vision, and census data. The study proves the feasibility of this approach for managing urban growth in emerging cities worldwide. It is a robust solution to the increasing imbalance in the urban morphology of metropolitan cities. The conclusions drawn from the broad-spectrum housing dispersal findings of this study will inform policymakers and planners regarding the realities of spatial patterns and future urban growth. 2021 Informa UK Limited, trading as Taylor & Francis Group.
    DOI/handle
    http://dx.doi.org/10.1080/10511482.2021.1962939
    http://hdl.handle.net/10576/35659
    Collections
    • Architecture & Urban Planning [‎308‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video