• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying crack parameters in slow rotating machinery using vibration measurements and hybrid neuro-particle swarm technique

    Thumbnail
    التاريخ
    2010
    المؤلف
    Senousy, Mohamed S.
    Khattab, Tamer M.
    Al-Qaradawi, Mohamed
    Gadala, Mohamed S.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Low-cycle fatigue-initiated cracks may result in failure in slow-rotating equipments. Online monitoring to identify such fault/crack parameters, namely crack size and crack location, would be critical in providing an early warning signal to the operator and would be used in calculating estimate about the remaining safe life of the equipment in operation. In an earlier study, a scaled-down slow-rotating washer drum was constructed to experimentally investigate the vibrations of a cracked rotor and/or drums. Cracks were simulated using the bolt removal method (BRM), and the vibration signals identifying signatures of certain cracks were measured. Thereafter, a 3D finite element model was used to solve the forward analysis of the inverse problem of crack identification. In this paper, the scaled-down experimental setup is introduced to cracks at different locations of the drum/rotor. Vibration signals identifying signatures of such cracks are measured. Since noisy signals, similar patterns of faults, and similar vibration fault signals create particular challenges for feature extraction systems, two techniques for feature extraction are considered and compared in this work. The fast Fourier transform (FFT) of the vibration signals showing variation in amplitude of the harmonics as time progresses are presented for comparison with the full time signal feature extraction. A hybrid particle-swarm artificial Neural Networks (neuroparticle swarm) is used to identify both the crack size andcrack location. The hybrid neuro-particle swarm technique is compared with the previously investigated fuzzy genetic algorithms. 2010 by ASME.
    DOI/handle
    http://dx.doi.org/10.1115/IMECE2010-39084
    http://hdl.handle.net/10576/35670
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]
    • الهندسة الميكانيكية والصناعية [‎1509‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video