• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A battery health monitoring method using machine learning: A data-driven approach

    Thumbnail
    عرض / فتح
    energies-13-03658-v2-.pdf (681.7Kb)
    التاريخ
    2020-07-15
    المؤلف
    Sheikh, Shehzar Shahzad
    Anjum, Mahnoor
    Khan, Muhammad Abdullah
    Hassan, Syed Ali
    Khalid, Hassan Abdullah
    Gastli, Adel
    Ben-Brahim, Lazhar
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Batteries are combinations of electrochemical cells that generate electricity to power electrical devices. Batteries are continuously converting chemical energy to electrical energy, and require appropriate maintenance to provide maximum efficiency. Management systems having specialized monitoring features; such as charge controlling mechanisms and temperature regulation are used to prevent health, safety, and property hazards that complement the use of batteries. These systems utilize measures of merit to regulate battery performances. Figures such as the state-of-health (SOH) and state-of-charge (SOC) are used to estimate the performance and state of the battery. In this paper, we propose an intelligent method to investigate the aforementioned parameters using a data-driven approach. We use a machine learning algorithm that extracts significant features from the discharge curves to estimate these parameters. Extensive simulations have been carried out to evaluate the performance of the proposed method under different currents and temperatures.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090506584&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/en13143658
    http://hdl.handle.net/10576/36461
    المجموعات
    • الهندسة الكهربائية [‎2846‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video