A battery health monitoring method using machine learning: A data-driven approach
المؤلف | Sheikh, Shehzar Shahzad |
المؤلف | Anjum, Mahnoor |
المؤلف | Khan, Muhammad Abdullah |
المؤلف | Hassan, Syed Ali |
المؤلف | Khalid, Hassan Abdullah |
المؤلف | Gastli, Adel |
المؤلف | Ben-Brahim, Lazhar |
تاريخ الإتاحة | 2022-11-15T11:34:39Z |
تاريخ النشر | 2020-07-15 |
اسم المنشور | Energies |
المعرّف | http://dx.doi.org/10.3390/en13143658 |
الاقتباس | Sheikh, S. S., Anjum, M., Khan, M. A., Hassan, S. A., Khalid, H. A., Gastli, A., & Ben-Brahim, L. (2020). A battery health monitoring method using machine learning: A data-driven approach. Energies, 13(14), 3658. |
الملخص | Batteries are combinations of electrochemical cells that generate electricity to power electrical devices. Batteries are continuously converting chemical energy to electrical energy, and require appropriate maintenance to provide maximum efficiency. Management systems having specialized monitoring features; such as charge controlling mechanisms and temperature regulation are used to prevent health, safety, and property hazards that complement the use of batteries. These systems utilize measures of merit to regulate battery performances. Figures such as the state-of-health (SOH) and state-of-charge (SOC) are used to estimate the performance and state of the battery. In this paper, we propose an intelligent method to investigate the aforementioned parameters using a data-driven approach. We use a machine learning algorithm that extracts significant features from the discharge curves to estimate these parameters. Extensive simulations have been carried out to evaluate the performance of the proposed method under different currents and temperatures. |
اللغة | en |
الناشر | MDPI |
الموضوع | Battery health monitoring Feature extraction Knee-point calculation Machine learning State of health |
النوع | Article |
رقم العدد | 14 |
رقم المجلد | 13 |
ESSN | 1996-1073 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]