• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Reinforcement Learning Method for Joint Mode Selection and Power Adaptation in the V2V Communication Network in 5G

    Thumbnail
    Date
    2020-06-01
    Author
    Zhao, Di
    Qin, Hao
    Song, Bin
    Zhang, Yanli
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A 5G network is the key driving factor in the development of vehicle-to-vehicle (V2V) communication technology, and V2V communication in 5G has recently attracted great interest. In the V2V communication network, users can choose different transmission modes and power levels for communication, to guarantee their quality-of-service (QoS), high capacity of vehicle-to-infrastructure (V2I) links and ultra-reliability of V2Vlinks. Aiming atV2V communication mode selection and power adaptation in 5G communication networks, a reinforcement learning (RL) framework based on slow fading parameters and statistical information is proposed. In this paper, our objective is to maximize the total capacity of V2I links while guaranteeing the strict transmission delay and reliability constraints of V2V links. Considering the fast channel variations and the continuous-valued state in a high mobility vehicular environment, we use a multi-agent double deep Q-learning (DDQN) algorithm. Each V2V link is considered as an agent, learning the optimal policy with the updated Q-network by interacting with the environment. Experiments verify the convergence of our algorithm. The simulation results show that the proposed scheme can significantly optimize the total capacity of the V2I links and ensure the latency and reliability requirements of the V2V links.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082530665&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TCCN.2020.2983170
    http://hdl.handle.net/10576/37007
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video