• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Demand Response in HEMSs Using DRL and the Impact of Its Various Configurations and Environmental Changes

    Thumbnail
    عرض / فتح
    energies-15-08235.pdf (4.062Mb)
    التاريخ
    2022
    المؤلف
    Amer, Aya
    Shaban, Khaled
    Massoud, Ahmed
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With smart grid advances, enormous amounts of data are made available, enabling the training of machine learning algorithms such as deep reinforcement learning (DRL). Recent research has utilized DRL to obtain optimal solutions for complex real-time optimization problems, including demand response (DR), where traditional methods fail to meet time and complex requirements. Although DRL has shown good performance for particular use cases, most studies do not report the impacts of various DRL settings. This paper studies the DRL performance when addressing DR in home energy management systems (HEMSs). The trade-offs of various DRL configurations and how they influence the performance of the HEMS are investigated. The main elements that affect the DRL model training are identified, including state-action pairs, reward function, and hyperparameters. Various representations of these elements are analyzed to characterize their impact. In addition, different environmental changes and scenarios are considered to analyze the model's scalability and adaptability. The findings elucidate the adequacy of DRL to address HEMS challenges since, when appropriately configured, it successfully schedules from 73% to 98% of the appliances in different simulation scenarios and minimizes the electricity cost by 19% to 47%. 2022 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/en15218235
    http://hdl.handle.net/10576/37501
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video