• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DRL-HEMS: Deep Reinforcement Learning Agent for Demand Response in Home Energy Management Systems Considering Customers and Operators Perspectives

    Thumbnail
    التاريخ
    2022
    المؤلف
    Amer, Aya
    Shaban, Khaled
    Massoud, Ahmed
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the smart grid and smart homes development, different data are made available, providing a source for training algorithms, such as deep reinforcement learning (DRL), in smart grid applications. These algorithms allowed the home energy management systems (HEMSs) to deal with the computational complexities and the uncertainties at the end-user side. This article proposes a multi-objective DRL-HEMS: a data-driven solution, which is a trained DRL agent in a HEMS to optimize the energy consumption of a household with different appliances, an energy storage system, a photovoltaic system, and an electric vehicle. The proposed solution reduces the electricity cost considering the resident’s comfort level and the loading level of the distribution transformer. The distribution transformer load is optimized by optimizing its loss-of-life. The performance of DRL-HEMS is evaluated using real-world data, and results show that it can optimize multiple appliances operation, reduce electricity bill cost, dissatisfaction cost, and the transformer loading condition. IEEE
    DOI/handle
    http://dx.doi.org/10.1109/TSG.2022.3198401
    http://hdl.handle.net/10576/37503
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]
    • الهندسة الكهربائية [‎2846‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video