• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An intelligent nonintrusive load monitoring scheme based on 2D phase encoding of power signals

    Thumbnail
    View/Open
    Int J of Intelligent Sys - 2020 - Himeur - An intelligent nonintrusive load monitoring scheme based on 2D phase encoding of.pdf (1.612Mb)
    Date
    2021
    Author
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    Nonintrusive load monitoring (NILM) is the de facto technique for extracting device-level power consumption fingerprints at (almost) no cost from only aggregated mains readings. Specifically, there is no need to install an individual meter for each appliance. However, a robust NILM system should incorporate a precise appliance identification module that can effectively discriminate between various devices. In this context, this paper proposes a powerful method to extract accurate power fingerprints for electrical appliance identification. Rather than relying solely on time-domain (TD) analysis, this framework abstracts the phase encoding of the TD description of power signals using a two-dimensional (2D) representation. This allows mapping power trajectories to a novel 2D binary representation space, and then performing a histogramming process after converting binary codes to new decimal representations. This yields the final histogram of 2D phase encoding of power signals, namely, 2D-PEP. An empirical performance evaluation conducted with three realistic power consumption databases collected at distinct resolutions indicates that the proposed 2D-PEP descriptor achieves outperformance for appliance identification in comparison with other recent techniques. Accordingly, high identification accuracies are attained on the GREEND, UK-DALE, and WHITED data sets, where 99.54%, 98.78%, and 100% rates have been achieved, respectively, using the proposed 2D-PEP descriptor. 2020 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC
    DOI/handle
    http://dx.doi.org/10.1002/int.22292
    http://hdl.handle.net/10576/37788
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video