• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detection of Appliance-Level Abnormal Energy Consumption in Buildings Using Autoencoders and Micro-moments

    Thumbnail
    التاريخ
    2022
    المؤلف
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The detection of anomalous energy usage could help significantly in signaling energy wastage and identifying faulty appliances, especially if the individual power traces are analyzed. To that end, this paper proposes a novel abnormal energy consumption detection approach at the appliance-level using autoencoder and micro-moments. Accordingly, energy usage footprints of different household appliances along with occupancy patterns are analyzed for modeling normal energy consumption behaviors, and on the flip side, detecting abnormal usage. In effect, energy micro-moments occur when end-users reflexively (i) switch on/off an appliance to start/stop an energy consumption action; (ii) increase/reduce energy consumption of a specific appliance; and (iii) enter/leave a specific room. Put differently, energy micro-moments are captured by reference to end-users' daily tasks usually performed to meet their preferences. In this regard, energy micro-moment patterns are extracted from appliance-level consumption fingerprints and occupancy data using an innovative rule-based algorithm to represent the key intent-driven moments of daily energy use, and hence model normal and abnormal behaviors. Moving forward, energy micro-moment patterns are fed into an autoencoder including 48 input/output neurons, and 4 neurons in the intermediate layer aiming at reducing the computational cost and improving the detection performance. This has helped in accurately detecting two kinds of anomalous energy consumption, i.e. "excessive consumption" and "consumption while outside", where up to 0.95 accuracy and F1 score have been achieved, for example, when analyzing microwave energy consumption. 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-031-07969-6_14
    http://hdl.handle.net/10576/37791
    المجموعات
    • الهندسة الكهربائية [‎2823‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video