• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A model for predicting room occupancy based on motion sensor data

    Thumbnail
    التاريخ
    2020
    المؤلف
    Sardianos, Christos
    Varlamis, Iraklis
    Chronis, Christos
    Dimitrakopoulos, George
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    When designing a large scale IoT ecosystem, it is important to provide economical solutions at all levels, from sensors and actuators to the software used for analytics and orchestration. It is of equal importance to provide non-intrusive solutions that do not violate users' privacy, but above all, it is important to guarantee the accuracy and integrity of the provided solution. In this work, we present a research prototype solution that has been developed as part of an ongoing project called (EM)3. The project involves IoT sensors and actuators, realtime data analytics modules and cutting edge recommendation algorithms in an ecosystem that improves energy efficiency in office buildings. The main concept of the (EM)3 is to recommend energy saving actions at the right moment to the right user. At the core of the (EM)3 vision is to detect when is the right moment for an energy saving action and sensors play a vital role in this. This article focuses on the model that predicts room occupancy using only data from a motion sensor. The predictions of the model, are used to trigger automations and notifications that turn-off office devices (e.g. air conditioning, lights, monitors, etc.) as soon as the office becomes empty, or a few minutes before this happens, in order to further promote efficient energy consumption habits. The evaluation of the model, using data from a camera sensor for validation, demonstrates a very low error rate and a very short delay on the detection of when the room is actually empty. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICIoT48696.2020.9089624
    http://hdl.handle.net/10576/37803
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video