• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using big data and federated learning for generating energy efficiency recommendations

    Thumbnail
    Date
    2022
    Author
    Varlamis, Iraklis
    Sardianos, Christos
    Chronis, Christos
    Dimitrakopoulos, George
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Internet of Things (IoT) devices are becoming popular solutions for smart home and office environments and contribute the most to energy efficiency. The most common implementation of such solutions relies on smart home systems that are hosted on the cloud. They collect data from a multitude of sensors, process it in real-time on the cloud and deliver immediate actions to sets of actuators that are installed locally. In this work, we present the (EM)3 project (Consumer Engagement towards Energy Saving Behaviour by Means of Exploiting Micro Moments and Mobile Recommendation Systems), which combines data collection, information abstraction, timed recommendations for energy saving actions and automations that promote energy saving in a household or office setup. The advantage of the (EM)3 project is that each room or office setup is controlled locally on an edge device, thus removing the need to share data to the cloud. The current article details on the data and information processing aspects of the (EM)3 solution, which efficiently handles thousands of sensor events on a daily basis and provides useful analytics and recommendations to the end user to support habit change. It also demonstrates the scalability of the solution by simulating a simple scenario of distributed data collection and processing on the edge nodes, which takes advantage of federated learning in order to adapt to the needs of multiple users without exposing their privacy. 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
    DOI/handle
    http://dx.doi.org/10.1007/s41060-022-00331-2
    http://hdl.handle.net/10576/37806
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video