• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    achieving Domestic Energy Efficiency Using Micro-Moments and Intelligent Recommendations

    Thumbnail
    عرض / فتح
    Achieving_Domestic_Energy_Efficiency_Using_Micro-Moments_and_Intelligent_Recommendations.pdf (1.513Mb)
    التاريخ
    2020
    المؤلف
    Alsalemi, Abdullah
    Himeur, Yassine
    Bensaali, Fayal
    Amira, Abbes
    Sardianos, Christos
    Varlamis, Iraklis
    Dimitrakopoulos, George
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Excessive domestic energy usage is an impediment towards energy efficiency. Developing countries are expected to witness an unprecedented rise in domestic electricity in the forthcoming decades. a large amount of research has been directed towards behavioral change for energy efficiency. Thus, it is prudent to develop an intelligent system that combines the proper use of technology with behavior change research in order to sustainably transform end-user behavior at a large scale. This paper presents an overview of our aI-based energy efficiency framework for domestic applications and explains how micro-moments can provide an accurate understanding of user behavior and lead to more effective recommendations. Micro-moments are short-term events at which an energy-saving recommendation is presented to the consumer. They are detected using a variety of sensing modules placed at prominent locations in the household. a supervised machine learning classifier is then used to analyze the acquired micro-moments, identify abnormalities, and formulate a list of energy-saving recommendations. Each recommendation is presented through the end-user mobile application. The results so far include a mobile application in the front-end and a set of sensing modules in the backend that comprise, an ensemble bagging-trees micro-moment classifier (achieving up to 99.64% accuracy and 98.8% F-score), and a recommendation engine. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/aCCESS.2020.2966640
    http://hdl.handle.net/10576/37827
    المجموعات
    • الهندسة الكهربائية [‎2846‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video