• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2022
    المؤلف
    Wakjira, Tadesse G.
    Al-Hamrani, Abathar
    Ebead, Usama
    Alnahhal, Wael
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Corrosion in steel reinforcement is a central issue behind the severe deterioration of existing reinforced concrete (RC) structures. Nowadays, fiber-reinforced polymer (FRP) is increasingly being used as a viable alternative to conventional steel reinforcement due to its anti-corrosive nature. The accurate estimation of the shear capacity of FRP reinforced concrete (FRP-RC) elements is critical for a reliable and accurate design and performance assessment of such members. However, existing shear models are often developed based on a limited database and important factors, limiting their prediction effectiveness. Hence, this paper presents novel machine learning (ML) based models for predicting the shear capacity of FRP-RC beams. A total of eleven ML models starting from the simplest white-box models to advanced black-box models are developed based on a large database of FRP-RC beams. Such investigation helps in examining the necessity of complex ML models and identify the most accurate predictive model for the shear capacity of FRP-RC beam. Moreover, a unified framework known as SHapley Additive exPlanation (SHAP) is used to identify the most important factors that influence the shear capacity prediction of FRP-RC beams. Among all investigated ML models, the extreme gradient boosting (xgBoost) model showed the best performance with the lowest error (mean absolute error, root mean squared eror, and mean absolute percent error) and highest coefficient of determination (R2), Kling-Gupta efficiency, and index of agreement between the experimental and predicted shear capacities. Moreover, the accuracy of the proposed xgBoost model was compared with that of the available code and guideline equations and resulted in a superior prediction capability. 2022 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2022.115381
    http://hdl.handle.net/10576/39138
    المجموعات
    • الهندسة المدنية [‎867‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video