Show simple item record

AuthorChen, Yinsong
AuthorYu, Samson
AuthorIslam, Shama
AuthorLim, Chee Peng
AuthorMuyeen, S.M.
Available date2023-02-26T08:29:58Z
Publication Date2022
Publication NameEnergy Reports
ResourceScopus
URIhttp://dx.doi.org/10.1016/j.egyr.2022.07.005
URIhttp://hdl.handle.net/10576/40382
AbstractRecently, numerous forecasting models have been reported in the wind power forecasting field, aiming for reliable integration of renewable energy into the electric grid. Decomposition-based hybrid models have gained significant popularity in recent years. These methods generally disaggregate the original time series data into sub-time-series with better stationarity, and then the target data is predicted based on the sub-series. However, existing studies usually utilize future data during the decomposition process and therefore cannot be appropriately employed for real-world applications, due to the inaccessibility of future data. This problem is usually known as the boundary issue. By ignoring the boundary issue during decomposition, the developed decomposition-based forecasting models will inevitably lead to unrealistically high performance than what is practically achievable. These impractical predictions would compromise the scheduling and control decisions made based on them. In light of this, this study provides an in-depth review of decomposition-based models for wind power forecasting, as well as the existing solutions for resolving the boundary issue. We first categorize decomposition-based models with the consideration of the boundary issue, wherein the treatment of the boundary issue varies over different hybrid model architectures (i.e., direct approach and multi-component approach) and decomposition techniques (i.e., empirical mode decomposition, variational mode decomposition, wavelet transform, singular spectrum analysis and hybrid decomposition). Then, we systematically summarize commonly available boundary issue solutions into three categories, namely algorithm-based solutions, sampling-strategy-based solutions and iteration-based solutions. We also evaluate the strengths and limitations of the existing boundary issue solutions and discuss their applicability to different classification of decomposition-based models for wind power forecasting. This study will provide useful references for a wide range of future studies for developing accurate and practical wind power forecasting models. 2022
SponsorThe publication of this article was funded by Qatar National Library .
Languageen
PublisherElsevier Ltd
SubjectBoundary issue
Decomposition-based model
Empirical mode decomposition
Time series forecasting
Wavelet transform
Wind power prediction
TitleDecomposition-based wind power forecasting models and their boundary issue: An in-depth review and comprehensive discussion on potential solutions
TypeArticle Review
Pagination8805-8820
Volume Number8
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record