• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study

    Thumbnail
    عرض / فتح
    electronics-11-02302-with-cover.pdf (2.749Mb)
    التاريخ
    2022
    المؤلف
    Ramnath, Gaikwad S.
    R., Harikrishnan
    Muyeen, S. M.
    Kotecha, Ketan
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    There is an increasing demand for electricity on a global level. Thus, the utility companies are looking for the effective implementation of demand response management (DRM). For this, utility companies should know the energy demand and optimal household consumer classification (OHCC) of the end users. In this regard, data mining (DM) techniques can give better insights and support. This work proposes a DM-technique-based novel methodology for OHCC in the Indian context. This work uses the household electricity consumption (HEC) of 225 houses from three districts of Maharashtra, India. The data sets used are namely questionnaire survey (QS), monthly energy consumption (MEC), and tariff orders. This work addresses the challenges for OHCC in energy meter data sets of the conventional grid and smart grid (SG). This work uses expert classification and clustering-based classification methods for OHCC. The expert classification method provides four new classes for OHCC. The clustering method is employed to develop eight different classification models. The two-stage clustering model, using K-means (KM) and the self-organizing map (SOM), is the best fit among the eight models. The result shows that the two-stage clustering of the SOM with the KM model provides 88% of overlap-free samples and 0.532 of the silhouette score (SS) mean compared to the expert classification method. This study can be beneficial to the electricity distribution companies for OHCC and can offer better services to consumers. 2022 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/electronics11152302
    http://hdl.handle.net/10576/40398
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video