• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Deep Learning BLACK-BOX Attack for Multimedia P-BOX Security Assessment

    Thumbnail
    التاريخ
    2022-01-01
    المؤلف
    Tolba, Zakaria
    Derdour, Makhlouf
    Ferrag, Mohamed Amine
    Muyeen, S. M.
    Benbouzid, Mohamed
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Resistance to differential cryptanalysis is a fundamental security requirement for symmetric block ciphers, and recently, deep learning has attracted the interest of cryptography experts, particularly in the field of block cipher cryptanalysis, where the bulk of these studies are differential distinguisher based black-box attacks. This paper provides a deep learning-based decryptor for investigating the permutation primitives used in multimedia block cipher encryption algorithms.We aim to investigate how deep learning can be used to improve on previous classical works by employing ciphertext pair aspects to maximize information extraction with low-data constraints by using convolution neural network features to discover the correlation among permutable atoms to extract the plaintext from the ciphered text without any P-box expertise. The evaluation of testing methods has been conceptualized as a regression task in which neural networks are supervised using a variety of parameters such as variations between input and output, number of iterations, and P-box generation patterns. On the other hand, the transfer learning skills demonstrated in this study indicate that discovering suitable testing models from the ground is also achievable using our model with optimum prior cryptographic expertise, where we contribute the results of deep learning in the field of deep learning based differential cryptanalysis development.Various experiments were performed on discrete and continuous chaotic and non-chaotic permutation patterns, and the best-performing model had an MSE of 1.8217{e}^{-04} and an R^{2} of 1, demonstrating the practicality of the suggested technique.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137880184&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2022.3204175
    http://hdl.handle.net/10576/40410
    المجموعات
    • الهندسة الكهربائية [‎2846‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video