• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bioinformatics investigation on blood-based gene expressions of Alzheimer's disease revealed ORAI2 gene biomarker susceptibility: An explainable artificial intelligence-based approach

    Thumbnail
    View/Open
    s11011-023-01171-0.pdf (5.856Mb)
    Date
    2023-01-01
    Author
    Sekaran, Karthik
    Alsamman, Alsamman M.
    George Priya Doss, C.
    Zayed, Hatem
    Metadata
    Show full item record
    Abstract
    The progressive, chronic nature of Alzheimer's disease (AD), a form of dementia, defaces the adulthood of elderly individuals. The pathogenesis of the condition is primarily unascertained, turning the treatment efficacy more arduous. Therefore, understanding the genetic etiology of AD is essential to identifying targeted therapeutics. This study aimed to use machine-learning techniques of expressed genes in patients with AD to identify potential biomarkers that can be used for future therapy. The dataset is accessed from the Gene Expression Omnibus (GEO) database (Accession Number: GSE36980). The subgroups (AD blood samples from frontal, hippocampal, and temporal regions) are individually investigated against non-AD models. Prioritized gene cluster analyses are conducted with the STRING database. The candidate gene biomarkers were trained with various supervised machine-learning (ML) classification algorithms. The interpretation of the model prediction is perpetrated with explainable artificial intelligence (AI) techniques. This experiment revealed 34, 60, and 28 genes as target biomarkers of AD mapped from the frontal, hippocampal, and temporal regions. It is identified ORAI2 as a shared biomarker in all three areas strongly associated with AD's progression. The pathway analysis showed that STIM1 and TRPC3 are strongly associated with ORAI2. We found three hub genes, TPI1, STIM1, and TRPC3, in the network of the ORAI2 gene that might be involved in the molecular pathogenesis of AD. Naive Bayes classified the samples of different groups by fivefold cross-validation with 100% accuracy. AI and ML are promising tools in identifying disease-associated genes that will advance the field of targeted therapeutics against genetic diseases.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85148448826&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s11011-023-01171-0
    http://hdl.handle.net/10576/41350
    Collections
    • Biomedical Sciences [‎796‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video